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Introduction 
Today, there are already many examples of artificial intelligence (AI) systems, powered by streams of 
data and advanced algorithms, improving healthcare by preventing hospitalizations, reducing 
complications, decreasing administrative burdens, and improving patient engagement. AI systems offer 
the promise to further accelerate and scale such results and provide impetus to the ongoing transition 
from our current disease-based system to one that is centered upon prevention and health 
maintenance. Nonetheless, AI in healthcare also brings with it a variety of unique considerations for U.S. 
policymakers, particularly for medical device regulators. 

Many organizations are taking steps to proactively address adoption and integration of AI into health 
care and how it should be approached by clinicians, technologists, patients and consumers, 
policymakers, and other stakeholders. Building on these important efforts, the Connected Health 
Initiative’s (CHI) Health AI Task Force has taken the next step to address the role of AI in healthcare 
through the development of health AI policy principles.1 

Generally, CHI believes that AI systems deployed in healthcare must advance the “quadruple aim” by 
improving population health; improving patient health outcomes and satisfaction; increasing value by 
lowering overall costs; and improving clinician and healthcare team well-being.  

In order to succeed, Health AI systems must: 
• Enhance access to health care. 
• Empower patients and consumers to manage and optimize their health. 
• Facilitate and strengthen the relationship and communication that individuals have with their 

health care team. 
• Reduce administrative and cognitive burdens for patients and their health care team. 

In providing its health AI policy principles with various key US federal policymakers, CHI’s diverse AI Task 
Force has identified an opportunity to expand its contribution through a projection of its health AI policy 
principles onto a collection of good machine learning practices (GMLPs). Through a variety of public and 
collaborative initiatives designed to refine and build consensus around GMLPs,  the objective is to 
provide a baseline that the Food and Drug Administration (FDA) and other governmental and non-
governmental stakeholders can leverage in their their ongoing consideration of the topic. We intend for 
this document to serve as a next step in shaping health AI-related policy developments at the FDA, at 
the US federal level widely, and internationally.  

CHI’s AI Task Force welcomes collaboration with any interested stakeholder moving forward and 
appreciates consideration of this document. 

  

 
1 Connected Health Initiative Policy Principles for Artificial Intelligence in Health, https://actonline.org/wp-
content/uploads/Policy-Principles-for-AI.pdf.  



 
 

Effective governance is required to accelerate and amplify continued Machine Learning 
innovation 
Machine Learning2 has advanced the quality and efficiency of 
medical devices and promises still greater innovations at an 
ever-quickening pace. Machine Learning’s track record coupled 
with sky-high expectations for the future have also spawned a 
proportionate demand for – and investment in – effective 
governance; a means of assessing Machine Learning (ML) 
application suitability and performance, managing associated 
risks, and ensuring public safety and ethical use.  

This document focuses on governance with respect two 
primary ML system categories: continuously learning 
systems (CLS) that are inherently capable of learning from 
real-world data and are able to update themselves 
automatically over time while in public use and “locks 
down” systems that have no ability to alter their 
configuration once testing and certification have been 
completed.  

Governance strives to ensure appropriate levels of 
transparency, reliability, safety, security, and privacy.  

Effective governance delivers on these objectives without 
compromising utility, efficiency, or innovation.3 

Effective ML governance is further required to instill confidence and trust in overall quality that, in turn, 
will lead to increased development velocity and ever-more ambitious innovation.  

ML governance must be engineered into ML development practices and account for ML 
application behaviors 
ML software behaves differently than traditional software in large part because it is developed 
differently.  

  

 
2 CHI supports the exemplary work of numerous organizations that are addressing healthcare AI, and seeks to 
harmonize and build upon these efforts including reuse, wherever possible, of accepted and recognized 
terminology and definitions. Unless defined inline, this paper will reuse the terminology and definitions included in 
in the December 2019-released Xavier University paper Building Explainability and Trust for AI in Healthcare. 
https://www.xavierhealth.org/news3/2020/1/8. 
3 This analogy has been borrowed with gratitude from the Open Compliance and Ethics Group, a non-profit think 
tank that promotes Principled Performance as the universal goal of every organization, team and individual. 

The fastest cars need the best brakes. 
To have the confidence required to drive 
at the highest speeds, a driver must 
trust their brakes – not just for 
emergencies, but for every scenario and 
under all conditions. And, without 
exception, the best brakes are 
engineered into the car; never added on 
as an afterthought1. 



 
 

Training Data shapes ML application behavior  
Rather than explicitly define each logical sequence through source code as a traditional 
developer would, a ML developer transforms a generic predictive engine (an untrained 
machine) using a carefully curated training data set. In much the same way that a sculptor 
creates a mold around an original object, the ML developer creates a trained machine 

around a training data set. The training data set is constructed by the developer, but the training 
(computational analysis and resulting modifications to the untrained machine) are executed without 
developer intervention. The training data set has replaced source code at this stage of the development 
process and represents a wholly new development artifact.  

How should training data sets be created, curated, and vetted?  

Source code does not predict ML application behavior 
There is no longer a one-to-one connection between application logic (behavior) and 
authored code. Depending on the training data set and the properties of the generic 
machine selected, the trained engine may have the ability to identify a broken bone in an 
X-ray, predict a heart attack, or dispense proper dosages of critical medication.  Static 

analysis of peripheral source code or the training data set cannot predict the trained ML engine’s 
behavior. 

How can testing criteria be established if software behavior itself cannot be fully specified? 

ML applications can continuously evolve  
Unlike the compilation of source code into an executable program, machine training is not 
restricted to a single operation prior to an application’s production release. If configured to 
do so, a trained machine that is in production (operational) can employ continuously 
learning systems (CLS) e.g. continue training using data consumed while in a production 

environment. This allows for the possibility that different copies of a single trained machine may each 
evolve independently from one another and from the initial trained machine.  

How should new behaviors be evaluated in the field? When can this behavior even be safely deployed? 

  



 
 

Effective governance of ML-enabled solutions begins with effective governance of ML 
software development and operations  
The scale, complexity and distribution of ML applications has made 
governing each ML application instance recommendation, prediction, and 
action impossible.  

What is possible – and practical – is to identify ML-specific risk factors 
stemming from the “paradigm-shifting” properties outlined above and 
evaluate how these have been proactively and transparently mitigated 
within a broader software development lifecycle management context.4   

 

 

 

 

 

 

 

 

 

 

 

Engineer effective ML governance into Medical Device software development lifecycles  
There is an established practice of adapting vetted quality system management and software 
development lifecycle practices to support the unique priorities and requirements of the medical device 
industry.  

The operative word here is “vetted.” Due in large part to the three paradigm-shifting properties of ML 
technology outlined above, general ML software quality and development practices may be, in some 
circumstances, less mature than the development practices currently in place. The potential immaturity 
of some ML quality and risk management practices suggests that something more than “adapting” 
generally accepted practices will be necessary.  
Given the accrued history and expertise of today’s healthcare software developers – and SaMD 
developers in particular – this community has a material contribution to make in advancing – not merely 
adapting – mainstream development best practices. 

 
4 Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based 
Software as a Medical Device (SaMD) 

How to get an A grade in ML software development 
“FDA will assess the culture of quality and organizational 
excellence of a particular company and have reasonable 

assurance of the high quality of their software 
   development, testing, and performance  

monitoring of their products2.” 

It’s not the “what”, it’s the “how.” 
The FDA Food Code ensures food 
safety and protection by focusing on 
broad areas of risk including the 
provisioning, preparation, and 
delivery of food.  
It is not possible to evaluate each of 
the billions of food servings 
delivered every day. Governing the 
food supply chain and preparation 
“lifecycle” is the only practical 
means of effective governance. 



 
 

Part 1: Trace ML-specific properties through the software development lifecycle 
The first task is to consider where traditional software development and quality management practices 
are most likely to require ML-specific accommodations prior to 
suggesting follow-on medical-device-specific adjustments.  

The approach taken here is to trace ML-specific properties through the 
software development lifecycle. In much the same way that a contrast 
MRI employs a dye to highlight specific and difficult to detect 
conditions, this paper traces ML-properties across three interwoven 
software development axes with a special sensitivity to healthcare’s 
overriding priorities, e.g. safety, transparency, and accuracy. The three 
development axes are: 
1. Software manufacturing (the general principles of how whatever 

is developed is constructed, delivered, and maintained),  
2. Software quality management (how suitability of purpose is 

defined and assessed for what is manufactured), and 
3. Software security and risk management (frameworks and 

practices for identifying, assessing, and mitigating risks stemming 
from missed manufacturing or quality management 
requirements). 

Part 2: Work-In-Progress Review: A Proposed Regulatory Framework for Modifications to 
AI/ML-Based Software as a Medical Device 
In April of 2019, The FDA published an ambitious work that 
incorporated ML-centric principles into existing software 
development practices5,  Proposed Regulatory Framework for 
Modifications to AI/ML-Based Software as a Medical Device (SaMD) 
- Discussion Paper and Request for Feedback.  

The stated goal was to advance a framework that would allow the 
FDA’s regulatory oversight to embrace the iterative improvement 
power of machine learning for Software as Medical Device while 
assuring that patient safety is maintained.  

Safety assurance is achieved through a multi-pronged approach 
that includes recommendations that ensure ongoing ML algorithm 
changes are: 
• Implemented according to pre-specified performance 

objectives,  
• Follow defined algorithm change protocols,  
• Utilize a validation process that is committed to improving the 

performance, safety, and effectiveness of AI/ML software, and  

 
5 The authors acknowledge their debt to the International Medical Device Regulators Forum (IMDRF) for their work 
on SaMD (which, itself, relies upon prior IEC and ISO standards and frameworks) while recognizing the need for  a 
“new, total product lifecycle (TPLC) regulatory approach that facilitates a rapid cycle of product improvement and 
allows these devices to continually improve while providing effective safeguards.” 

A Contrast MRI 
A contrast MRI uses the injection of a 
contrast dye to better highlight certain 
conditions that might otherwise go 
undetected. 



 
 

• Include real-world monitoring of performance.  

These recommendations are rolled into an updated Total 
Product Lifecycle (TPLC) regulatory framework with the 
ultimate aim of promoting a mechanism for manufacturers 
to be “continually vigilant in maintaining the safety and 
effectiveness of their SaMD,” supporting “both FDA and 
manufacturers in providing increased benefits to patients 
and providers.”  

As with The Food Code, the FDA would assess the culture of 
quality and organizational excellence of a particular 
company in order to establish “reasonable assurance” of the high quality of their software development, 
testing, and performance monitoring of their products. 

Given that general-purpose software development practices are themselves undergoing a material ML-
driven evolution,  
• Are there any underlying assumptions regarding quality and audit that merit closer review? 
• What assurances can be built-in to ensure that those changes will be appropriately reflected in the 

central regulatory notions of “a culture of quality and excellence” and “reasonable assurance?” 

Part 3: Beyond the Total Product Lifecycle6 
Are there untapped approaches to embrace ML’s most dynamic 
and opaque (but potentially powerful) properties? Are there 
longer-term opportunities to reimagine certification and pre-
certification roles and workflows to further leverage AI/ML 
innovations?  

Perhaps the most radical ML property from a regulatory 
perspective is the potential for algorithms to evolve after 
release and distribution. This capability is what is referred to as 
continuously learning systems. 

Currently, this is only a theoretical concern as there is a blanket 
prohibition of this scenario across every existing and proposed 
TPLC regulatory framework.  

Might there come a time when this prohibition will be 
perceived as imposing an undue constraint on innovation? Is 
there a scenario – perhaps in a robotics context – where 
allowing an initial set of SaMD instances to evolve wholly 
independently from one another will be identified as an 
absolute requirement? How would today’s notions of 
manufacturing lifecycle and quality need to adapt? 

 
6 See Appendix C: Beyond the Total Product Lifecycle 

The FDA, Machine Learning & SaMD 

The FDA’s has already begun the 
complex task of reimagining 
regulatory oversight to best embrace 
the power of machine learning while 
continuing to assure patient safety.  

Only “frozen algorithms” need apply 
(for now) 

As with a graduating class of 
identically trained physicians whose 
skills mature independently over 
time, it is possible for an initial set of 
ML SaMD instances to evolve wholly 
independently from one another after 
distribution.  

Might there come a time when the 
prohibition of real-time, continuous 
learning is perceived as an undue 
constraint on innovation?  



 
 

Machine Learning is not the only transformative computing force. Cloud services, mobile 5G, and 
blockchain are among a growing list of revolutionary technological domains that are enabling entirely 
new ways of working, collaborating, and communicating.  

Are there near-term organizational or technological opportunities that can help to prioritize near-term 
ML regulatory, governance and compliance requirements while also better positioning stakeholders 
across the healthcare and technology spectrum to capitalize on what may appear at first to be ML’s 
most radical properties? 

  



 
 

Tracing Machine Learning development properties through a general 
software development and DevOps lifecycle 
Healthcare software governance combines policies and controls to:  

• Ensure public safety  
• Mitigate risks stemming from  

o Unintended consequences 
o Poor execution 
o Adversarial exploitation 

• Encourage innovation in applications as well as the specialized development and testing tools 
required to produce those applications. 

In what ways might ML development properties challenge foundational assumptions underlying 
traditional development lifecycle management practices?  

Software Development Lifecycle Management 
Software Development Lifecycle (SDLC) Management and DevOps tooling and practices normalize and 
automate software manufacturing processes while helping to ensure that safety, transparency, and 
privacy requirements are met.  

In order for Machine Learning to complete its transition from paradigm-shifting innovation to a 
mainstream technology, SDLC management must also meet any additional requirements stemming from 
ML data-driven machine training development practices, e.g. Machine Learning Software Development 
Lifecycle Management (MLDLC).  

Figure 1: Traditional SDLC versus Machine Learning MLDLC wrapping in a DevOps iterative pipeline. 

Figure 1 illustrates the elements of, and relationships between, a traditional Software Development 
Lifecycle and a Machine Learning Development Lifecycle operating within a well-formed DevOps 
pipeline.  

  



 
 

The Figure 1 notes are described in the following table.  

 
 

Topic Note 

1 Code vs  
Data + 
Output 

Code sits at the center of a traditional SDLC and, consequently, is subject to rigorous 
quality, audit, and sourcing controls. Given that Data + Output supplants Code in a 
MLDLC, it follows that an equivalent – but not identical – collection of controls are 
needed to ensure that effective quality, audit and sourcing remain in place.  

2 Libraries vs  
Untrained 
Models 

A traditional SDLC has built-in support for managing reusable code, typically in the form 
of libraries, to speed and simplify development, improve quality and auditability, and to 
help ensure consistency over time and across development teams. In much the same 
fashion, MLDLC will draw from a collection of reusable untrained models7. These models 
are code-based and are often organized as a traditional library, but given their 
heightened impact on development outcomes, a corresponding increase in Untrained 
Model governance may also be justified. 

3 3rd Party 
Resources 

Today’s applications increasingly rely upon 3rd party managed services, libraries, and 
software components. SDLC tools (Integrated Development Environments or IDE’s) as 
well as software and service distribution channels have been extended to better support 
this rapidly evolving software supply chain. Supply chain risk management has also 
evolved to ensure appropriate visibility and accountability as the sourcing of code and 
services become increasingly distributed and diverse. IDE’s and IT security and risk 
management frameworks must evolve in-kind to keep pace with the consequences of 
including 3rd party Data + Output and/or Untrained Models into the modern software 
supply chain. 

4 Production 
Programs 

The traditional SDLC deliverable is an executable program. The MLDLC deliverable is a 
trained model. Due to ML statistical techniques, it is typically not possible – or nearly 
impossible – to trace exactly why a trained model behaves as it does.  The absence of a 
decision tree in an ML program renders traditional SDLC code reviews, debugging, and 
general monitoring techniques obsolete. ML programs may require compensating 
mechanisms to ensure comparable degrees of transparency, reliability and auditability.  

5 Output Both traditional SDLC and DevOps best practices include a feedback loop that can be 
used to generate new requirements or improve existing features. This kind of continuous 
feedback fuels future program iterations and is subjected to the complete SDLC 
beginning with requirements through coding, test, etc. However, there are some 
branches of Machine Learning, specifically Continuously Learning where feedback is 
delivered directly into the current Production ML Program. These classes of Machine 
Learning bypass traditional SDLC inspection and approval steps and may result in 
unplanned and, potentially, unexpected behaviors. Owners and regulators of sensitive 
and high-risk applications that must include human inspection may need to consider a 
blanket prohibition of these subcategories of Machine Learning until new norms about 
acceptable risk and transparency can be established. At a minimum, a greater 
understanding of the limitations and side-effects of deployed machine learning 
algorithms will be required by auditors and regulators.  

Table 1: MLDLC requirements stress traditional SDLC practices. 

  

 
7 ML programs also include “traditional reusable code” as well.  



 
 

Machine Learning SDLC Requirement Summary 
Tracing ML properties through high level SDLC stages suggested several potential new or modified 
requirements including: 

1. The transition from code-driven to data-
driven development will require 
corresponding practices and controls to 
meet quality, audit, and sourcing 
requirements.  

2. Reusable Untrained Models are a special 
class of reusable code that, given their 
heightened impact on development 
outcomes, require a proportionate increase 
in governance. 

3. Security and risk management must evolve 
in-step to keep pace with the implications 
of including 3rd party Data + Output and/or 
Untrained Models into the modern 
software supply chain. 
 

4. Production ML programs may require novel 
monitoring and debugging mechanisms to 
ensure acceptable transparency, reliability, 
and auditability 

5. Owners and regulators of sensitive and 
high-risk applications may need to consider 
blanket prohibitions of CLS Machine 
Learning models unless and until revised 
notions of transparency and predictability 
are established.  

6. Integrated Development Environments 
(IDE’s) and associated tooling will need to 
be extended to better scale and automate 
all phases of the new MLDLC. 

Quality Management 
While SDLC management measures and 
manages software manufacturing, distribution, 
and consumption, Software Quality is the field 
of study and practice that describes, measures, 
and manages the desirability (suitability) of the 
software itself.  

Production Software Quality is, in large part, 
built upon Software Program Quality (the 
executable) that is, in turn, built upon the 
underlying Code Quality.  

The shift to trained models away from code 
suggests a requirement to supplement existing 
code-centric quality practices and metrics.  

 

                                                                 

Figure 2: Quality is managed throughout the 
development lifecycle. 

Figure 2 illustrates the elements of, and relationships between, common quality metrics divided into 
three segments: underlying code (or trained model), the resulting program, and the performance or 
suitability of that program.  



 
 

Figure 2 notes are described in the following table:  

 Quality Topic Note 
1 Code vs  

Trained Model 
Code sits at the center of a traditional Software Quality Practice with well-defined 
subcategories including functional completeness, comprehensibility, auditability, 
testability, and updatability. To preserve overall Quality, ML development must 
develop equivalent – but not identical – methods of measuring and establishing 
acceptable quality metrics and tolerances.  

Trained Model vs Code 
2 Functionally 

Complete 
Code can be statically analyzed, monitored for “coverage”, and otherwise exercised to 
generate a mapping of input data and environmental states to expected outcomes.  

ML models are trained and tested through the processing of carefully curated data 
sets – there is no code that can be parsed and traced. Poorly formed datasets 
generate unexp ected and potentially unpredictable, behaviors and/or incorrect 
weighting of outcome predictions. Common examples of training data set gaps 
include:  
- Insufficient data volume  
- Lopsided data distribution across activities and outcomes 
- Missing activities and/or outcomes 
- Impossible activities or outcomes 

Poor data sets can result in the compromise multiple functional subcategories 
including: 
- Suitability: will the software behave appropriately for all users? 
- Accuracy: are functions implemented correctly? The models themselves may 

meet the highest quality standards, but the resulting trained model may fail to 
meet those standards. 

- Compliance: is the software in compliance with the necessary laws and 
guidelines? Transparency and predictability are required with virtually every 
regulatory and/or compliance obligation. 

Development must have reliable means of detecting and, as needed, remediating gaps 
and other data set irregularities prior to ML model training. 

3 Comprehensible Every ML model includes intrinsic limitations. Understanding the stated purpose and 
objectives of a ML application and the hosting platform and implementation language 
will not be sufficient to assess the suitability of either training data or the selected ML 
models. In order to meaningfully “comprehend” the expected behavior of a trained 
model, a reviewer must have specialized data science expertise and be knowledgeable 
in the strengths and limitations of the applied model(s) and the data 
staging/cleansing/sampling techniques.  

4 Auditable Tracing, reverse-engineering, and predicting how a model will behave given a specific 
set of inputs is difficult and, in practical terms, often impossible. This is especially true 
with extremely complex systems with many thousands of variables; the most common 
examples include image recognition, robotics, and natural language processing. A 
consensus on acceptable alternatives to traditional event logging in code-based 
applications are needed to provide a comparable degree of assurance.  
Untrained models are often provided by open source communities or platform 
providers. A common format for sourcing the precise model and version with a record 



 
 

of know Quality issues would help to predict Quality issues that may arise in the final 
trained model.  

5 Testable Exception detection, defect definition, and related KPI’s (including testing cost) must 
be established to effectively model the severity and cost of ML application defects 
specifically related to under-performance.  
Output measurement must also be standardized, utilizing what developers measure 
for their own data models including terminology and their own interpretation of 
medical information. This industry-specific formulation results in a harmonization of 
terminology across regulators and stakeholders that will improve quality 
management. 

Table 2: Trained Models drive expansion of code-centric Software Quality practices. 

ML Software Quality Summary 
Tracing ML properties across basic Quality System segments suggested several additional new or 
modified requirements including: 

1. ML Software must meet the same 
quality standards as code-based 
software. As such, there must be 
equivalent methods of measuring and 
establishing acceptable ML-centric 
quality metrics and tolerances to offset 
inapplicable code-centric controls. 

2. ML-centric controls must cover both 
the special data sets used for training 
and testing ML models as well as the 
trained ML models themselves.  

3. Reviewers, testers, and auditors will 
require additional specialized data 
science expertise including a working 
knowledge of the strengths and 
limitations of deployed model(s), the 
implications of their parameters as well 
as any data staging/cleansing/sampling 
techniques that are applied. 

4. The sourcing of untrained models is a 
potential supply chain gap – in much 

the same way that a revised compiler 
can introduce quality issues in 
established source code. A common 
format for sourcing a precise model and 
version with a record of known quality 
issues would likely help to predict 
Quality issues that may arise in a final 
trained model. 

5. Quality Systems must also incorporate 
updated and harmonized health care 
specific terminology, data collection, 
and measurement practices to ensure 
the availability of relevant baseline 
healthcare quality metrics and 
standards. 

6. The establishment of exception 
detection, defect definition, and related 
KPI’s (including testing cost estimation) 
are needed to effectively model the 
severity and cost of ML application 
defects specifically related to ML under-
performance.



 
 

Software Security and Risk Management 
Effective risk and security management begins with 
identifying and prioritizing material threats and 
works to establish effective controls that reduce 
risk to acceptable levels. For application risk and 
security management, recommended practices 
typically include: 
• Detailed Abuse Cases8 that are used to  

o Develop a business/technical specific 
Threat Model9 that in turn is used to 
assess risks stemming from  

§ Each application’s Attack 
Surface10, e.g. the application’s 
entry and exit points.                                              

                                                                                                                 Figure 3: Risk and Security Modeling 
These interrelated components evolve with production usage and feedback generating additional Abuse 
Cases that in turn update the Threat Model resulting in further refinements to the application’s Attack 
Surface and underlying controls.  

Software Security and Risk Management practices must also expand to meet new requirements 
stemming from Machine Learning development practices, technology, and use cases. Figure 3 notes are 
described in the following table. 

 Risk & Security  Note 
1 Abuse Cases The current paucity of established ML Abuse Cases is likely to lead to an incomplete 

view of potential threats and undermine threat modeling activities and the subsequent 
control priorities that follow.  

2 Vulnerabilities ML systems novel use of training data to create production behaviors have spawned 
an equally novel set of novel vulnerabilities including: 
• Data poisoning (injecting training data designed to cause errors)  
• Adversarial input (data crafted to be misclassified by targeted models) 
• Exploitation of errors in autonomous system goals 
The set of known ML-specific vulnerabilities is almost certainly incomplete as are the 
range of potential exploits.  

3 Controls There is a further deficit in established Preventative and Detective Controls to mitigate 
the risks stemming from ML-inspired vulnerability attacks.   

4 Risks Effective risk assessments are dependent upon accurate probability estimates. Risk 
calculations typically combine:  

 
8 OWASP Abuse Case Cheat Sheet 
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md 
9 OWASP Application Threat Modeling 
https://www.owasp.org/index.php/Application_Threat_Modeling#1._What_are_we_building.3F 
10 OWASP Attack Surface Cheat Sheet 
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Attack_Surface_Analysis_Chea
t_Sheet.md 



 
 

• The probability of an incident occurring (an exploit of a vulnerability) 
• The probability of that incident causing harm and 
• The degree of harm that comes with each occurrence 
The rapidly evolving use of ML across industries and use cases significantly complicate 
ML risk assessment calculations making risk mitigation investment decisions more 
difficult to calibrate.  

5 Threats  In addition to the exploitation of unique ML vulnerabilities, the weaponization of ML 
in the hands of bad actors must also be considered. Examples include: 
• Automation of social-engineering attacks and the dissemination of political 

misinformation leveraging improved profiling, messaging and deep fake image 
and audio generation. 

• Anonymization and scaling of physical assaults using autonomous drones and 
other vehicles 

• Highly efficient and distributed cyber-attacks leveraging specialized ML models. 
• Expansion of potential attackers as democratization of all of the above removes 

human domain expertise as a requirement.    
ML expands the variety of potential threats, improves the efficiency of existing threats, 
and expands the number of potential attackers.  

6 Trained models ML training and test data sets represent additional attack surface opportunities to be 
included in current Attack Surface mapping practices.  

Table 3: Machine Learning impact on established Application Risk and Security practices 

Machine Learning Security and Risk Management Summary 
Tracing ML properties through security and risk management categories highlight some measure pf risk 
from all three ML property categories listed above. 

1. The short history of successful ML exploits 
constrains Threat Modeling practices.  

2. The inventory of ML-specific vulnerabilities 
is incomplete as are the understanding of 
potential exploits. 

3. There is a further deficit in established 
Preventative and Detective Controls to 
mitigate the risks stemming from ML-
inspired vulnerability attacks.   

4. The rapidly evolving use of ML across 
industries and use cases significantly 
complicate ML risk assessment calculations 

making risk mitigation investment decisions 
more difficult to calibrate. 

5. ML training and test data sets represent 
additional attack surface opportunities to 
be included in current Attack Surface 
mapping practices. 

6. ML has a multiplicative effect on Risk and 
Security management by expanding the 
variety of potential threats, improving the 
efficiency of existing threat tactics, and 
expanding the number of potential 
attackers

 

  



 
 

Work-In-Progress Review: A Proposed Regulatory Framework for 
Modifications to AI/ML-Based Software as a Medical Device  
A Proposed Regulatory Framework for Modifications to AI/ML-Based Software as a Medical Device 
(SaMD) - Discussion Paper and Request for Feedback was published with the stated goal of advancing a 
framework to allow the FDA’s regulatory oversight to embrace the iterative improvement power of 
machine learning for Software as Medical Device while assuring that patient safety is maintained.  

The proposed Total Product Lifecycle (TPLC) regulatory framework is designed to ensure ongoing ML 
algorithm changes are: 
• Implemented according to pre-specified performance objectives,  
• Follow defined algorithm change protocols,  
• Utilize a validation process that is committed to improving the performance, safety, and 

effectiveness of AI/ML software, and  
• Include real-world monitoring of performance.  

In order to manage the scale and scope of this ambitious effort and to avoid the necessity of auditing 
every development milestone of every software component, the FDA proposes assessing the culture of 
quality and organizational excellence of a particular company in order to establish “reasonable 
assurance” of the high quality of their software development, testing, and performance monitoring of 
their products. 

As outlined in the prior section, much of the underlying general-purpose software development 
standards, frameworks, and practices11 are themselves actively undergoing their own ML-driven 
evolution. This section drills into the updated Total Product Lifecycle Regulatory approach and the 
associated “Culture of Quality and Organizational Excellence” to identify:  
• Underlying assumptions regarding Software Development Lifecycle Management, Quality or Risk 

that may merit closer review, and  
• Mechanisms to ensure evolving assumptions are appropriately reflected in the central notions of “a 

culture of quality and excellence” and “reasonable assurance.” 

In order to “balance the benefits and risks, and provide access to safe and effective AI/ML-based SaMD,” 
the revised TPLC seeks to establish clear expectations on quality systems and good ML practices (GMLP) 
as outlined in the following illustration.  

 
11 See Appendix A: Supporting organizations and underlying standards and frameworks. 



 
 

Figure 4: Overlay of FDA's TPLC approach on an ML workflow  

Figure 4 notes are described in the following table. 

Table 4: ML development considerations within the FDA’s proposed Total Product Lifecycle Regulatory 
approach 
  

Note TPLC-specific guidance is subject to underlying ML Development and Operations dependencies 
1 A Culture of Quality and Organizational Excellence has historically relied upon IEC 62304 for 

establishing required “lifecycle support processes.” IEC 62304 is currently code-centric in its 
audit, test and monitoring assumptions. 

2 Premarket Assurance of Safety and Effectiveness identifies ML-data-centric gaps but specific 
patterns and practices have not (yet) been addressed.  

3 Review of SaMD Pre-Specifications and Algorithm Change Protocol works to constrain many of 
the dynamic, continuous adaptation capabilities of some ML algorithms in order to mitigate 
unexpected results in the field. Without some breakthroughs in transparency and monitoring, 
many of the most dynamic learning algorithms will most likely be entirely prohibited for use 
inside SaMDs.  

4 Real-World Performance Monitoring is an essential to ensuring transparency, effectivity and 
actual usage patterns. Special care must be taken to correctly interpret results as a measure of 
ML model performance and differences between SaMD model releases. 



 
 

GMLP Summary 
Evaluating GMLP in the context of the ongoing evolution of ML-centered development quality, SDLC, 
and risk management, the following issues may merit deeper investigation: 

1. Heavy reliance on standards that have 
historically been defined by methodical and 
deliberate revision policies may not be able 
to keep pace with rapidly changing 
development practices and exacerbate 
rather than mitigate quality risk stemming 
from ML’s data-driven versus code-driven 
properties. 

2. Without a sufficient body of verified ML 
development patterns have been 
documented, it may be difficult to establish 
a durable definition of “reasonable” and 
“effective.” 

3. The long-standing requirement that all 
copies of a given device or software 
instance can only by updated but cannot 
independently evolve prohibits a subset of 
dynamic and continuously learning 
applications.  

4. Incident management and platform 
monitoring systems will likely need to 
expand incident categories and severity 
ratings to account for unique classes of 
exceptions unique to ML services. 

 

The Culture of Quality and Organizational Excellence 
The Culture of Quality and Organizational Excellence is itself 
comprised of three management principles:  
1. Leadership that sets the organizational tone,  
2. Lifecycle Support Processes that wrap and operationalize 

the actual development, and at its core,  
3. Deployment, and maintenance activities associated with 

actual SaMD development.  

As noted in Table 4, note 1 above, software lifecycle 
standards, such as IEC 62304, are code centric and will likely 
need to be extended or adapted to the unique lifecycle 
requirements associated with training ML algorithmic models.                                                                                                    
                                                                                                                                 

 

 

FDA SaMD QMS Principles 



 
 

 

Figure 5: ML development impact on IEC 62304 development lifecycle processes. 

Figure 5 notes are described in the following table. 

Note ML development impact on IEC 62394 development lifecycle processes. 
1 Software Risk Management: How will risks associated with training data sets be mitigated? 
2 Software development planning: How will Software Of Unknown Providence (SOUP) be extended 

to accommodate 3rd party algorithms and external training data?  
3 Software requirements analysis: How will issues relating to bias and transparency be 

incorporated? 
4 Software release: Given the requirements above, how can FDA Premarket Safety Assurance 

requirements be effectively be met?  
5 Maintenance plan: Defining, measuring, and documenting the degree of change within an SaMD 

will require significant coordination and consensus.  
6 Problem and modification analysis: Documenting root causes and effectivity of modifications 

stemming from data set deficiencies will require new (or enhanced) concepts, tooling and 
terminology. 

Table 5: ML development considerations within IEC 62304: Medical device software lifecycle 
processes. 

  



 
 

Culture of Quality and Organizational Excellence 
Evaluating working definition of the Culture of Quality and Organizational Excellence in the context of 
the ongoing evolution of ML-centered development quality, SDLC, and risk management, the following 
issues may merit deeper investigation: 

1. To satisfy an external auditor/examiner, 
Organizations will need to be able to tap 
into a sufficiently large body of recognized 
ML controls able to substantially meet their 
requirements. 

2. Suppliers of third party and embedded 
software, also referred to as Software Of 
Unknown Providence (SOUP), must be able 
to satisfy corresponding requirements for 
transparency, safety, security, and privacy.  

3. Individuals will need the ability to know 
if/how their data may be used to develop 
and/or train machines or algorithms. The 
opportunity to participate in data collection 
for these purposes must be on an opt-in 
basis.12 13 

4. A consensus must be reached on the 
definition and measurement of a wholly 
new quality criteria related to behavior, e.g. 
bias and human-readable decision-making 
transparency. 

5. New (or enhanced) concepts, tooling and 
terminology will likely be required across a 
broad spectrum of operations management 
capabilities to properly capture the impact 
of dataset deficiencies including: 
• Chance control documentation 

including risks assessment, 
• Root cause analysis, and 
• Modification effectiveness. 

 

  

 
12 Connected Health Initiative Policy Principles for 
Artificial Intelligence in Health, 
https://actonline.org/wp-content/uploads/Policy-
Principles-for-AI.pdf.   

13 American Medical Association’s privacy principles 
https://www.ama-assn.org/system/files/2020-
05/privacy-principles.pdf.   



 
 

Initial observations 
There is wide agreement that existing regulations need revision to accommodate the unique (and 
potentially disruptive) properties of Machine Learning technologies and development processes.  

100% of Proposed Regulatory Framework responses endorsed the requirement to update 
existing medical device regulatory obligations to accommodate Machine Learning14.   

The FDA, responding to this need, has proposed a regulatory framework to manage what is likely to be 
one of the most challenging aspects of regulating ML-driven “Software as Medical Devices,” 
modifications that may, or may not, require a review and recertification – a potentially time-consuming 
and expensive process. 

One of the distinguishing properties of the Machine Learning approach is the capacity for 
programs to alter behavior over time without requiring additional coding or software updates. 
This kind of unsupervised learning challenges conventional development, quality, and risk 
practices and policies. 

The FDA proposal built off existing regulations, frameworks, and definitions, extended some where 
needed, and added wholly new constructs when it was determined to be unavoidable.  

Initial feedback to the proposed framework reinforced the importance of leveraging existing 
standards and framework – perhaps to an even greater extent than the initial proposal 
envisioned.  

There is significantly more work that needs to be done refining and harmonizing definitions, completing 
core processes and performance metrics, as well as educating the vast community of stakeholders.  

Tracing ML-specific development and technical properties from Innovator practices through 
relevant tooling, development frameworks, and standards promises to ultimately shorten and 
simplify the work required to effectively and efficiently “protecting the public health by ensuring 
Software as Medical Device safety, efficacy, and security.” 

This can be most effectively accomplished through a sustained collaboration with, and 
communication across, the stakeholder ecosystem (innovators, platform providers, 
supranational standards bodies, government regulators, etc.). 

 
  

 
14 See Appendix B: Respondent Submission Analysis 



 
 

Appendix A: Supporting organizations and underlying standards and 
frameworks 
There is an established practice of adapting vetted quality system management and software 
development lifecycle practices to support the unique priorities and requirements of the medical device 
industry. The following list includes frameworks and documents, as well as the associated governing 
organizations, that provide underlying support for the FDA’s Proposed Framework for Modifications to 
AI/ML-based SaMD. 

 

 

 

 

 

 

 

 

International Electrotechnical Commission (IEC)  
The IEC prepares and publishes International Standards for all electrical, electronic and related 
technologies.  

IEC 62304:2006/AMD 1:2015 Medical device software life cycle processes is a standard which specifies 
life cycle requirements for the development of medical software and software within medical devices.  

International Organization for Standardization (ISO)  
ISO is an independent, non-governmental international organization with a membership of 164 national 
standards bodies. ISO – in conjunction with the IEC – has identified the need to develop standards for AI 
that “can benefit all societies.” Established in 2017, this is the charter of the ISO/IEC Joint Technology 
Committee (JTC) 1 / SubCommittee (SC) 42 for artificial intelligence (SC 42).  

SC 42’s scope includes basic terminology and definitions, risk management, bias and trustworthiness in 
AI systems, robustness of neural networks, machine-learning systems and an overview of ethical and 
societal concerns. SC 42 has already published three Big Data standards with 13 projects currently under 
development. Five of these are highlighted below. 

ISO/IEC JTC 1/SC 42: Artificial Intelligence 

AI/ML ISO standards under development from ISO/IEC JTC 1/SC 42 include: 
ISO/IEC 23053 Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML) 
ISO/IEC 24027 Bias in AI systems and AI aided decision making 
ISO/IEC 38507 Governance implications of the use of artificial intelligence by organizations 
ISO/IEC 23894 Artificial Intelligence — Risk Management 
ISO/IEC TR 24368 Artificial Intelligence (AI) — Overview of ethical and societal concerns 



 
 

International Medical Device Regulators Forum (IMDRF) 
The IMDRF is a voluntary group of medical device regulators from around the world who have come 
together to form the Global Harmonization Task Force on Medical Devices (GHTF) whose mission is to 
“accelerate international medical device regulatory harmonization and convergence.” Their relevant 
works to date are highlighted here. 

IMDRF publications include: 
IMDRF/SaMD WG/N10 SaMD: Key Definitions 

IMDRF/SaMD WG/N12 SaMD: Possible Framework for Risk Categorization & Corresponding 
Considerations 

IMDRF/SaMD WG/N23 SaMD: Application of Quality Management System 
IMDRF/SaMD WG/N41 SaMD: Clinical Evaluation 

US Food and Drug Administration (FDA) 
The FDA is responsible for protecting the public health by ensuring the safety, efficacy, and security of 
drugs, biological products, and medical devices. In addition to the Proposed Regulatory Framework for 
Modifications to AI/ML-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for 
Feedback, the FDA is also active in contributing to, endorsing, and re-publishing many of the IMDRF 
publications listed above. At this time, the FDA has not made ML-specific modifications to Medical 
Device regulatory obligations (see 21 CFR Parts 803 through 861).  

  



 
 

Appendix B: Respondent Submission Analysis 
Proposal Questions and Feedback 
While there were no constraints placed on the kinds 
of feedback or questions that could be submitted, the 
FDA included questions that covered the most 
important (or perhaps controversial) elements of the 
proposed TPLC framework. 

Questions included in Proposed Regulatory 
Framework were divided into subtopics. 
• How complete is the classification of AI/ML SaMD 

modifications and will they be effective and 
helpful?  

• Is the GMLP complete? How can the FDA help 
manufactures incorporate new requirements into 
their existing QMS systems and practices?  

• All feedback to the definitions and 
implementation details surrounding SPS and ACP. 
These are entirely new elements to the proposed 
certification process. 

• How can the process of premarket review (review 
prior to an initial SaMD launch) be better defined 
and managed?  

• How can “real-world” data be captured, 
analyzed, secured, and weighted throughout this 
entire process?  

•  What should the ACP include and how can it be 
consistently and effectively assessed across 
manufacturers and SaMDs?  

These questions bring to the fore just how potentially 
disruptive Machine Learning may be in the short-
term – and why it is in everyone’s interest to shorten 
the ML transition into the mainstream. 

That being the case, why did 64% if respondents fail 
to answer even one of the FDA’s questions?  

64% of the public responses did not 
directly reference a single question 

included in the Framework Proposal. 

 

Questions included in Proposed Regulatory Framework 
  
The types of AI/ML-SaMD modifications (Key: AI/ML SaMD) 
1. Do these categories of AI/ML-SaMD modifications align with the 

modifications that would typically be encountered in software 
development that could require premarket submission?  

2. What additional categories, if any, of AI/ML-SaMD modifications 
should be considered in this proposed approach?  

3. Would the proposed framework for addressing modifications 
and modification types assist the development AI/ML software?  

Good Machine Learning Practices (Key: GMLP) 
1. What additional considerations exist for GMLP?  
2. How can FDA support development of GMLP?  
3. How do manufacturers and software developers incorporate 

GMLP in their organization?  

SPS and ACP (Key SPS/ACT) 
1. What are the appropriate elements for the SPS?  
2. What are the appropriate elements for the ACP to support the 

SPS?  
3. What potential formats do you suggest for appropriately 

describing a SPS and an ACP in the premarket review submission 
or application?  

Premarket review (Key: PreMarket) 
1. How should FDA handle changes outside of the “agreed upon 

SPS and ACP”?  
2. What additional mechanisms could achieve a “focused review” 

of an SPS and ACP?  
3. What content should be included in a “focused review”?  

The transparency and real-world performance monitoring  
(Key: Transp & Monitoring) 
1. In what ways can a manufacturer demonstrate transparency 

about AI/ML-SaMD algorithm updates, performance 
improvements, or labeling changes, to name a few?  

2. What role can real-world evidence play in supporting 
transparency for AI/ML-SaMD?  

3. What additional mechanisms exist for real-world performance 
monitoring of AI/ML-SaMD?  

4. What additional mechanisms might be needed for real-world 
performance monitoring of AI/ML-SaMD?  

ACP Scope: (Key: ACP) 
1. Are there additional components for inclusion in the ACP that 

should be specified?  
2. What additional level of detail would you add for the described 

components of an ACP?   



 
 

The following analysis is based upon the public responses to The Proposed Regulatory Framework for 
Modifications to AI/ML-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for 
Feedback. 

Looking at the respondents’ own questions and/or their interest (and/or lack of interest) in the FDA’s 
questions offers insight into how stakeholders outside of the FDA perceive these issues and which of 
these may be perceived as more (or less) important or controversial. 

Respondent industries and corresponding stakeholder community roles 
Respondent submissions are available for review on the FDA website15. Figure B1 maps the self-
identified Industry Categories of 127 respondents to generic Stakeholder Community roles16.   

Figure B1: Respondent Industry Categories and Stakeholder Roles 

Perhaps it is not surprising to learn that the primary stakeholders have the loudest voice (at least by 
sheer volume), but, given the importance of vendor-neutral, independent “Supranational bodies” in 
shaping regulations, should they? 

Respondent priorities 
The questions embedded inside the FDA’s regulatory framework proposal are calibrated to address the 
FDA’s priorities, but are those priorities and their relative weighting shared? Figure B2 illustrates the 
percentage of responses that included specific topics. These topics are grouped into “framework-
specific” (that are unique to the proposed regulatory framework) and “mainstream activities” (that are 
general issues already described relating to the mainstreaming of any disruptive technology). 

 
15 https://www.regulations.gov/document?D=FDA-2019-N-1185-0001  
16 When included, the respondent’s organization was also used to map into the Stakeholder Community role. 



 
 

64% of respondents did not answer any 
of the 18 questions included in the 
proposal. Closer inspection of 
respondents’ comments suggests a 
difference in emphasis and, perhaps, 
priority.  

Respondents that did answer FDA-
specific questions:  
1. Were much more likely to comment 

on the ML SaMD modification 
categories, the recertification 
criteria and process, and the 
description of the TPLC. 

2. Consistently raised issues across   
the mainstream activities of Quality, Risk, Ecosystem          Figure B2: Topic interest of respondents 
 (collaboration across roles) and Frameworks (reconciliation with other frameworks). 

3. Respondents that did not answer the FDA-specific questions were significantly more likely to focus 
on software Quality and Risk issues. 

4. Regardless of whether the FDA-specific questions were addressed, there was a general concern 
around the definition and treatment of “Locked” models.  

Respondent priorities by topic  
Does a respondent’s stakeholder role as innovator or standards body (versus regulatory agency or 
consumer) also influence their priorities? If yes, should the dominance of one stakeholder role over all 
others be factored-in or weighted when considering responses?  

Figure B3: percentage of responses across topics by Ecosystem Stakeholder role. 

Figure B3 maps the percentage of topics included in responses by Stakeholder role (only three roles had 
enough responses to be statistically meaningful).   

1. Quality, Risk, FDA SaMD modifications and recertification processes received the greatest attention.  
2. Generally, Innovators, consumers, practitioners and suppliers responded more consistently with one 

another as compared to Supranational organization responses.  



 
 

3. Taken as a group, comments relating to Ecosystem (cross roll collaboration), Frameworks (cross 
framework reconciliation), and Dictionary (defining common terms and definitions across domains) 
were a strong, consistent area of concern. 

FDA-specific question response 
While only 36% of respondents addressed the embedded 18 questions directly, those responses were 
extensive and, obviously, important to assess.  

Figure B4: Count of responses that included commentary for each FDA-embedded question. The 
questions are segmented by topic. All Respondents are shown alongside the three highest reporting 
Ecosystem Stakeholder roles. 

1. Respondents gave the greatest amount of attention to the questions relating to Good Machine 
Learning Practices.  

2. Relative to the other subtopics, Algorithm Change Protocol received substantially less attention 
from Innovators, et al than any other subtopic. This gap was not evident in either of the other two 
Stakeholder roles.  

3. The high innovator response volume depressed the relative importance of the ACP subtopic. Given 
the close relationship between Supranational Organizations and Government Regulators already 
discussed and the consensus around the importance of framework and regulatory consistency, 
should the (apparent) lack of interest from Innovators be discounted?  

 

  



 
 

Appendix C: Beyond the Total Product Lifecycle 
Software development lifecycle management, like virtually all modern Product Lifecycle Management, is 
a highly iterative process, but within any given version, the lifecycle stages are executed in a strictly 
linear sequence. As an example, within a given version n, coding, building, and testing must always 

precede deployment and production operation.  

When configured to do so, continuously learning algorithms 
can breach the strict sequencing imposed by development 
lifecycle methodology. Not surprisingly, the FDA’s proposed 
AI/ML TPLC includes a prohibition of this kind of evolutionary 
behavior in real-time and in production. This is a sound policy 
as there is no precedent to contradict this position to be found 
in the underlying standards and frameworks.   

Yet, while there is no underlying precedent, might there be a 
precedent to be found in an adjacent health care domain?  

 

 

Who’s Who and What Do They Do? 
To assure patient safety, every healthcare worker must, on a reoccurring basis, be credentialed by an 
array of professional, State and Federal agencies.  
Expensive and time consuming: Credentialing costs the U.S. healthcare system billions of dollars per 
year and it is time consuming. Credentialing one physician takes, on average, 100 days; a time period 
where that physician cannot practice.  
Thanks to encrypted digital ledgers, mobile technology, and cloud services, this seemingly intractable 
bureaucratic nightmare is being reimagined and rebuilt as a high-speed, on-demand service able to 
support existing regulatory and statutory obligations at scale – improving patient safety and increasing 
healthcare professional availability.  
If this technology can be trusted to credential hundreds of thousands of mobile healthcare 
professionals – what would it take to credential and authenticate millions of continuously learning 
medical devices?  



 
 

 

 

 

 

 

 

 

 

Figure C1: modeling an individual SaMD instance Quality as an independent healthcare worker’s Skill.  

The training, testing, and certification of a physician is not unlike the (ML)DLC or the FDA’s GMLP for an 
AI/ML SaMD. The two only truly diverge after “certification.” A physician is expected to continue to 
learn and improve – often in ways that are distinct from other physicians who were part of the same 
graduating class, a.k.a. the same release.  

While there are governing bodies and controls in place to monitor the maturation of each individual 
physician – and to remove their privileges when needed – AI/ML SaMDs cannot be monitored 
individually today. As such, to assure patient safety, individual SaMD instance continued growth cannot 
be permitted.  

Could a similar technology cocktail of encrypted digital ledgers (blockchain), mobile, and cloud 
technologies scale to reliably authenticate and then certify each individual medical device instance?  

The first question that needs to be asked and answered is what innovation or benefits will be lost if 
continuous learning in production cannot be deployed. If there is no compelling use case, subsequent 
issues around monitoring and regulating their safety are moot.  

What is evident is that, in order to remain relevant and support innovation, every interested party must 
remain open to reimagining the traditional roles and relationships between innovators, regulators, 
patients, service providers, et al alongside the coming waves of ML discoveries and breakthroughs.  

 


